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Assessment of Low-Re
Turbulence Models and Analysis
of Turbulent Flow in Porous
Media Consisting of Square
Cylinders With Different
Diameter Ratios
This paper presents a comparative study of volume average predictions between
low-Reynolds-number (LRN) turbulence models: Abe–Kondoh–Nagano (AKN), Lam–
Bremhorst, Yang–Shih, standard k–�, and k–x. A porous medium, which represents con-
ditions in which the flow path changes rapidly, was defined as an infinite array of square
cylinders. In addition, to explore the effect of particle size on the rapid expansion and
contraction of the flow paths, the diameter ratio (DR) of the square cylinders was system-
atically varied from 0.2 to 0.8. This generalization revealed new insights into the flow.
The Reynolds number (ReD) covered a turbulent range of 500 to 500� 103, and the
porosity / was varied from 0.27 to 0.8. The correlations of the turbulent kinetic energy
(k), its dissipation rate (e), and macroscopic pressure gradient as a function of /, which
are useful in macroscopic turbulence modeling, are presented. The results show that the
AKN model yields better predictions of the volume-averaged flow parameters because it
is better suited to reproduce recirculation zones. For all the DRs, at high /, the distances
between walls are high, and the interstitial velocities are low. Consequently, wake flows
are produced, and energy losses by friction are moderate. As the flow becomes increas-
ingly bound, the wakes are suppressed and disrupted, and k and e increase owing to shear
layer interactions and frictional forces. Distinctive low-velocity recirculation patterns
appear inside pores depending on DR. [DOI: 10.1115/1.4048284]

Introduction

As turbulence generally enhances heat transfer, mixing, chemi-
cal reactions, and energy dissipation at the smallest scales, it is
essential to understand its effects in porous media to support engi-
neering phenomena and applications, for example, flow in fracture
models, enhanced oil recovery techniques, irrigation systems, and
the design of catalytic reactors, fluidized beds, and static mixers.
To determine the pressure drop in porous percolation networks
and its relationships with turbulent parameters within porous sys-
tems, tailored analytical, experimental, and numerical tools are
required.

Velocity measurement techniques such as hot-wire anemometry
are difficult to implement in porous media, as the solid walls of
the matrix may interfere with the probe. Other techniques such as
laser Doppler velocimetry or particle image velocimetry, require
translucent walls and fluids [1,2]. Matching the refraction index of
the pore walls to that of the fluid is not a trivial task, in part
because manufacturing a porous matrix with translucent walls
involves additional complexities. For this reason, computational
fluid dynamics has emerged as a useful alternative for understand-
ing turbulent flow in a porous medium.

Wood et al. [3] recently presented a comprehensive review of
the most important methodologies, advances, and challenges of
modeling turbulent flow in porous media. Different formulations
of the Reynolds number have been established. For example, the

pore Reynolds number Rep is defined in terms of the volume-
averaged intrinsic velocity huif , whereas ReD is the same dimen-
sionless number, but is defined in terms of the Darcy velocity uD.
Other definitions use the representative volume element (RVE)
height (H) instead of the particle diameter (D). The appropriate
parameters must be selected for each model, and according to
Wood et al. [3], there is no formulation that can be considered uni-
versally optimal.

The most powerful numerical approach to modeling turbulent
flow is direct numerical simulation (DNS). This technique can
handle turbulent motions at all the relevant temporal and spatial
scales without any modeling assumptions [3,4]. However, because
the smallest dissipative scales (the Kolmogorov scales) demand
high spatial and temporal resolution, DNS studies rely on the use
of powerful supercomputers and have focused mostly on the lower
range of the turbulent regime (i.e., Rep< 5000). For example, Jin
et al. [5] studied turbulence in porous media consisting of an infi-
nite array of square cylinders using grids of up to 384� 106 cells
for 500<Rep< 1000. Another representative work is that of Chu
et al. [6], where grids with as many as 200� 106 cells were used
to simulate similar porous media at 500<Rep< 1500.

Large eddy simulation (LES) is also a powerful approach and
has less stringent resolution requirements. Based on the energy
cascade model of Kolmogorov, LES resolves the largest eddies
directly, considering that they contain most of the flow kinetic
energy, whereas the dissipative eddies are accounted for by a
subgrid-scale model assuming isotropic or anisotropic conditions
[7]. Using the LES technique, Suga and coworkers have studied
turbulent flow in different types of porous media at Rep< 3500
using grids ranging from 4.2� 106 to 21� 106 cells [8,9]. Impor-
tant parameters such as the pressure strain terms, heat fluxes,
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Reynolds stresses, and other turbulent quantities were discussed.
Although LES is less computationally demanding than DNS, its
implementation requires well-refined grids and a large number of
time steps to deliver statistically converged solutions. The latter is
inconvenient for studies that involve multiple simulations.

For this reason, Reynolds-averaged Navier–Stokes (RANS) tur-
bulence models have been applied in parametric studies of porous
media and have shown reasonable agreement with both DNS [10]
and LES [11,12], but without the need for large computational
resources. This approach is based on the ensemble averaging of
the mean and fluctuating components of the Navier–Stokes flow
variables. When this averaging procedure is used, the fluctuating
velocity terms are used to obtain the Reynolds stress tensor, which
is then modeled using an eddy viscosity formulation. Among
those RANS-based turbulence models, the two-equation models
of the k–e or k–x family have been implemented in a wide variety
of engineering fields. These models assume isotropic turbulence
and thus are commonly used to simulate high-Reynolds-number
flows, where their predictions are considered valid, especially in
regions far from the walls. Examples of successful applications
include the design of airflow distribution systems, vehicle aerody-
namics, nozzles and diffusers in turbomachinery, and cooling ele-
ments in electronic devices [13].

However, it is known that in the near-wall region, these models
yield unsatisfactory results, because their formulations do not
account for the rapid attenuation of the velocity fluctuations in
zones close to the viscous sublayer [14]. For highly confined
domains such as those in porous media, this drawback is particu-
larly important. To address this shortcoming, the original models
are corrected by applying damping functions to the production
and destruction terms of the e transport equation, as well as in the
turbulent viscosity. The resulting modified versions are known as
low-Reynolds-number (LRN) turbulence models.

Two approaches can be used to develop macroscopic turbu-
lence models of porous media; both use RVEs to model periodic
porous structures. In the first approach, the Reynolds averaging
operator is applied to the volume-averaged macroscopic equations
of the turbulent kinetic energy (k) and its dissipation rate (e)
[15,16]. This procedure accounts for the turbulence in the domain
from a global perspective. In the second approach, the RANS
equations are obtained and then integrated over an RVE to obtain
the macroscopic turbulence model equations [17,18]. Because the
second approach accounts for the turbulence within pores, it has
been applied to various types of porous media [16,19]. The feasi-
bility of simulating turbulence using this approach has been con-
firmed by Nakayama and Kuwahara [18] and Pedras and Lemos
[20], and more recently by Yang et al. [16] and Kundu et al. [21].
These works reported the correlations among the macroscopic
pressure gradient (MPG), k, and e as functions of the porosity and
particle geometry in homogeneous porous domains.

Different formulations of the damping functions of the LRN
turbulence models have been presented in the literature; the most
common are those of the Lam–Bremhorst (LB), Abe–Kondoh–
Nagano (AKN), and Yang–Shih (YS) models. For example, the
damping function applied to the eddy viscosity in the LB model
employs the one-equation model proposed by Hassid and Pored
[22], and it has been tested in a fully developed pipe flow [23].
The AKN model applies the Kolmogorov velocity scale in the
damping formulas for both the eddy viscosity and the e transport,
and it has been validated for backward-facing step flows [24]. The
YS model applies a characteristic time scale that approaches the
Kolmogorov time scale in the near-wall region, and it has been
validated in boundary layers with favorable, adverse, and zero
pressure gradient [25].

These LRN models have been applied individually to porous
media to study turbulence in homogeneous domains. For example,
Kuwahara et al. [26] used the AKN model to simulate turbulent
flow over square cylinders of infinite length. Kundu et al. [12]
employed the YS model to simulate the flow over an arrangement
of infinite circular cylinders, and Yang et al. [16] applied the

standard k � e (STD) model with enhanced wall treatment to per-
form three-dimensional calculations of flow domains composed of
arrangements of spheres, ellipses, and cubic elements.

According to our review of the state of the art, the only work
that compared the LRN turbulence models in the same framework
was that of Hrenya et al. [10], which focused on the fully devel-
oped turbulence inside a conduit. Those authors reported differen-
ces in the predicted velocity, turbulent viscosity, and k profiles,
but they did not compare any volume-averaged quantities. Each
LRN turbulence model has been developed under different
assumptions, and despite the importance of the model accuracy,
there is little information on the most accurate model of k and e
inside porous media, especially in separated flows. Moreover,
other formulations, such as the LRN version of the k–x model
(LR k–x) have not been explored. Consequently, a comparative
study is highly desirable to generate workbench data for reliable
simulations, especially when volume-averaged quantities are
crucial.

It is well known that porous materials do not always consist of
solid elements having the same geometry and length scale.
Instead, they may consist of particles of different sizes (i.e., grain
diameters) sorted in different ways. Examples include hierarchical
porous carbons [27], foams [28], nanomaterials [29], and rock for-
mations [30]. In these cases, the macroscopic behavior of the fluid
flow through the porous medium is determined by the local mean
velocities and turbulent parameters in the flow paths. Over the last
decade, extensive efforts have been made to understand turbulent
flows [12,19,21], and the correlations between k, e, and the MPG
have been proposed for porous media consisting of staggered
arrays of particles of the same diameter. However, distinctive
flow patterns are expected in domains composed of particles with
different sizes because their flow paths rapidly expand or contract.
To systematically replicate these conditions, the diameter ratio
(DR) has been included in the analysis.

Some insight about the effect of the particle size variation could
be found, for instance, in the work of Kuwata and Suga, who
implemented LES to simulate three-dimensional fractal arrange-
ments by applying the lattice Boltzmann method [8]. Important
differences in quantities such as the permeability, the Forchheimer
coefficient, and k were found between the body-centered cubic
array and the fractal and staggered rectangular arrays.

Accordingly, this work considers the effect of the diameter ratio
and porosity on the turbulent structures in an array of infinite cyl-
inders with square cross sections. The porosity (/) was varied
from 0.27 to 0.8, and the diameter ratio, DR ¼ d=D, ranged from
0.2 to 0.8 at intervals of 0.2. Here, the Reynolds number is defined
as ReD ¼ uDD=� and is based on the largest particle diameter D.
The variables � and uD represent the kinematic viscosity and
Darcy velocity, respectively. The latter is related to the intrinsic
velocity as uD ¼ /huif . To cover a large portion of the turbulent
regime, it was varied from 500 to 500� 103. One of the goals of
this work is to elucidate the effect of DR on the velocities, vortic-
ity, and turbulence variables inside pores, and to present new cor-
relations between k, e, and the MPG. The latter could be helpful
for understanding flow features and energetic losses in engineer-
ing applications such as static and moving fluidized beds, fabrics,
nuclear power facilities, and oil well flows, among others.

In addition, this paper presents an updated assessment of the
AKN, LB, YS, STD, and LR k–x turbulence models, with a focus
on flow over an infinite array of square cylinders. The assessment
considers the ability of these models to predict volume-averaged
values of key parameters. It is important because the LRN turbu-
lence models have been tested by comparing profiles but not
volume-averaged quantities in pipe flows or infinite flat plates
without reattachment and separation. Therefore, it could support
more confident selection of the most appropriate model for simu-
lating more complex flows (multiphase flows, flow in fracture net-
works, and heat-transfer, among others).

This paper is structured as follows. The Computational Meth-
ods section describes the porous domains, microscopic governing
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equations, damping terms, and applied boundary conditions
(BCs). The macroscopic modeling assumptions are summarized,
and the grid independence is analyzed. In the Results and Discus-
sion section, the LRN turbulence models are assessed using the
volume-averaged parameters as a function of ReD and /. The
studied domain is a porous medium consisting of a spatially peri-
odic array of square cylinders of the same diameter. In addition,
the effects of the DR and the porosity are described in terms of
the volume-averaged values and the main flow patterns are shown
using dimensionless contour maps of uD, x, k, and e.

Computational Methods

Porous Model Domain. The porous medium is modeled as an
infinite array of large square cylinders in a symmetrical repetitive
arrangement with smaller cylinders surrounding them in the
domain. As shown in Fig. 1(a), the RVE height (H) is fixed, and
the diameter ratio of the small and large cylinders (DR ¼ d/D) is
0.2, 0.4, 0.6, and 0.8. The corresponding / values of 0.72, 0.63,
0.48, and 0.27, respectively, were calculated using
/¼ 1� (D2þ 3d2)/H2. The geometry of the RVEs is illustrated in
Fig. 1(b). The representative lengths of the components of this
RVE were chosen assuming a fully developed macroscopic flow
directed parallel to the x coordinate. Because the domain is sym-
metrical along the normal direction and periodic in the streamwise
direction, an RVE consisting of a large cylinder surrounded by
smaller ones was selected. The size of the RVE was determined
according to the works described in Refs. [18], [20], and [21]. The
validity of this selection was tested by comparing the solutions for
DR¼ 0.6, /¼ 0.48, and ReD¼ 50� 103, and DR¼ 0.6, /¼ 0.8,
and ReD¼ 5� 103 obtained using domains that were four times
larger.

At the inlet–outlet boundaries of the RVE, denoted as ab-a’b’
in Fig. 1(b), a periodic BC was imposed, whereas on the upper
and lower boundaries (cd–c’d’), the flow was considered to be
symmetric. In the large cylinder and surrounding smaller ones, the
nonslip BC was applied. As mentioned previously, the Reynolds
number ReD covered the turbulent regime from 500 to 500� 103.

To better understand the relationship between porosity and flow
characteristics, / was varied from 0.27 to 0.8 by adjusting the H
value of the RVEs for all the DR cases. As an example, Fig. 2
shows the variation in the RVE at DR¼ 0.6 and porosities of 0.3,

0.6, and 0.8. Because of the changes in H at a fixed DR, the
smaller squares were closer to the large one for low values of /.
Conversely, for high /, the smaller cylinders were more distant,
i.e., H1 < H2 < H3.

Microscopic Governing Equations and Damping Terms. A
steady incompressible Newtonian flow inside the pores was con-
sidered. The RANS equations of the mass and momentum are
given by

@ui

@xi
¼ 0 (1)

qf

@ujui

@xj
¼ � @P

@xi
þ @

@xj
l
@ui

@xj
� qf u0iu

0
j

� �
(2)

The effect of the turbulent Reynolds stresses in the momentum
equations was accounted for using the Boussinesq approximation
according to

�qf u
0
iu
0
j ¼ lt

@ui

@xj
þ @uj

@xi

� �
� 2

3
kdij (3)

The turbulent viscosity was defined as

lt ¼ qf flCl
k2

e
(4)

The k and e transport equations are given by

@

@xi
kuið Þ ¼ @

@xj
� þ �t

rk

� �
@k

@xj

" #
� u0iu

0
j

@ui

@xj
� e (5)

@

@xi
euið Þ ¼ @

@xj
� þ �t

re

� �
@e
@xj

" #
þ f1C1e

e
k

u0iu
0
j

@ui

@xj

� �
� f2C2e

e2

k

(6)

In Eq. (4), the damping terms fl of the LRN turbulence models
are based on the formulations presented in Table 1. Additionally,

Fig. 1 Porous domains: (a) schematic representation as a function of the diameter ratio and (b) two-dimensional
RVE geometrical description
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Table 2 lists the damping functions for the production and
destruction of the e terms. In the LRN turbulence model runs,
default values of Cl¼ 0.09, C1e¼ 1.44, C2e¼ 1.92, rk¼ 1.0, and
re¼ 1.3 were used. For the AKN simulations, the constants were
adjusted to C1e¼ 1.5, C2e¼ 1.9, rk¼ 1.4, and re¼ 1.4 [31]. For
the LR k–x model, the damping term applied to the turbulent vis-
cosity formulation (lt¼ a�qk=x) and the vorticity production
term used the following constants: a�1 ¼ 1:0; Rek ¼ 6, and
a�0 ¼ 0:024. For brevity, the turbulence transport equations of the
LR k–x model are not described in detail here, but the formula-
tion of that model can be found in Ref. [14].

Boundary Conditions. At the walls, the following nonslip BC
was applied:

ui ¼ 0; k ¼ 0; e ¼ � @
2k

@n2
(7)

Periodic BCs were imposed at x¼ 0 and x¼H

ujx¼0 ¼ ujx¼H; vjx¼0 ¼ vjx¼H

kjx¼0 ¼ kx¼H; ejx¼0 ¼ ex¼H

(8)

At y¼ 0 and y¼H, the symmetry BC was applied:

@u

@y
¼ @v

@y
¼ @k

@y
¼ @e
@y
¼ 0 (9)

The governing equations were solved by the finite volume
method using the pressure-based steady solver in the FLUENT code.

In all the runs, the pressure and velocity were coupled using the
SIMPLE algorithm. The continuity, momentum, k, and e equa-
tions were discretized using the second-order upwind scheme.
The solutions were considered converged when the residuals of
all the flow variables were smaller than 10�5.

Macroscopic Modeling of Turbulence Parameters. Although
the macroscopic model of the turbulence is similar to the micro-
scopic model, the former includes two additional terms that repre-
sent the transport and production of k and e inside the porous
matrix. There are several formulations of the source terms, which
are based on dimensional analysis and empirical fitting between
the geometrical characteristics of the porous medium and the tur-
bulent parameters. According to Guo et al. [32], the model pre-
sented by Nakayama and Kuwahara [18] yields better agreement
with experimental results in a packed column compared to other
models. Consequently, the correlations presented here are appro-
priate for use in this model.

As stated by Nakayama and Kuwahara, it is difficult to deter-
mine experimentally the unknown model constants, even for arti-
ficially consolidated porous media, and estimates were proposed
on the basis of numerical experiments using solutions of the
microscopic transport equations for k and e [18]. By considering a
macroscopically uniform flow directed along the x direction with
zero mean shear and without thermal effects, the generalized mac-
roscopic equations could be reduced to

huif dhkif

dx
¼ �heif þ e1 (10)

huif dheif

dx
¼ �C2

heif
� �2

hkif
þ C2

e2
1

k1
(11)

For a periodically fully developed flow, the equations were fur-
ther simplified to

Fig. 2 Representative volume elements for DR 5 0.6 and porosity values: (a) / 5 0.3, (b) / 5 0.6, and (c) / 5 0.8

Table 1 Damping functions of the turbulent viscosity relations

Model fl

AKNa,d ½1� expð�y�=14Þ�2f1þ ð5=R0:75
t Þexp ½�ðRt=200Þ2� g

LBa,b ½1� expð�0:0165RyÞ �2ð1þ 20:5=RtÞ
YSb ½1� expð�1:5� 10�4Ry � 5:0� 10�7R3

y � 1:0� 10�10R5
yÞ �

2

a�

LRk-xc a�1ða�0 þ Retx=RkÞð1þ Retx=RkÞ�1

aRt ¼ k2=�e:
bRy ¼ y

ffiffiffi
k
p
=�.

cRtx ¼ k=�x:
dy� ¼ uKy=�.

Table 2 Damping functions of the e terms used in the LRN tur-
bulence models

Model f1 f2

AKN 1 ½1� expðy�=3:1Þ�2½1� 0:3 exp½�ðRt=6:5Þ2�
LB 1þ ð0:05=flÞ3 1� expð�R2

t Þ
YS 1=½1þ 1=

ffiffiffiffiffi
Rt

p
� 1=½1þ 1=

ffiffiffiffiffi
Rt

p
�
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k1 ¼ hkif and e1 ¼ heif (12)

Thus, it is possible to calculate the macroscopic model con-
stants, k1 and e1, from the intrinsic volume-averaged values of k
and e calculated using the microscopic governing equations under
periodic and fully developed conditions. For Eqs. (10)–(12), the
intrinsic volume-averaged value of a given flow variable a is
obtained as

haif ¼ 1

V

ð
Vf

adV (13)

Grid Independence Analysis. The grid independence was
verified, taking as representative the case of the most highly con-
fined flow (DR¼ 0.8 and /¼ 0.27) under fully turbulent condi-
tions (ReD¼ 100� 103), and the STD model. As shown in
Table 3, four grids with cell sizes ranging from 16� 103 to 127�
103 were constructed by halving the total grid size. To avoid false
spatial convergence, especially in the near-wall region, the num-
ber of nodes N arranged uniformly along each cylinder wall was
sequentially doubled. In addition, the near-wall regions were
highly refined to capture the strong flow gradients resulting from
the nonslip condition. During the meshing process, a fixed number
of nodes were imposed along the walls of the smallest cylinders,
as well as at the periodic and symmetric edges. All the edges were
connected by the proximity and curvature algorithm using a
growth rate of 1.20. The average skewness values of the resulting
grids were less than 0.08. According to the ANSYS meshing guide-
lines, grids with average skewness values of less than 0.1 are of
high quality [33].

The vorticity (x) is an important indicator of flow rotation and
requires good predictions of the velocity gradients. In addition, e
is related to the kinetic energy lost to viscous dissipation.
Figs. 3(a) and 3(b) show the profiles of the dimensionless x and e
values extracted at the vertical line L1 located 0.1H from the peri-
odic left edge (see Fig. 4). Because this line appears in a region
where high flow gradients are present, it was considered suitable
for comparison.

Because of the gap flow, the profiles of the dimensionless x
and e values are asymmetric. The shapes of the profiles are similar
regardless of the number of cells. However, the level of refine-
ment appeared to affect the magnitude of the values, especially in
the 33.3 k and 60.4 k grids. The vorticity of these grids showed a
maximum deviation of 16% at y/L1¼ 0.5, whereas the predicted
values of e deviated by approximately 15% at y/L1¼ 0.4. At the
next-highest level of refinement, the profiles corresponding to the
60.4 k and 127 k grids were very similar, and the maximum differ-
ences in the values of vorticity and e at the same location
decreased to approximately 4.6% and 3.3%, respectively.

The predicted volume-averaged values of the dimensionless k
and e are listed in Table 3. The grid convergence indexes (GCIs)
and extrapolated errors (eext) were estimated by comparing the
predictions with the values obtained using the Richardson extrap-
olation method following the methodology for nonuniform grids

presented in Celik and Karaketin [34]. The extrapolated errors
between the 60.4 k and 127 k grids were 0.31% and 0.11% for k
and e, and their GCIs were 0.93% and 0.36%, respectively. These
differences are in fair agreement with those in other numerical
works [16,35].

Because damping functions act in the near-wall regions where
viscous effects are important, two additional grids with lower yþ

values were tested using the AKN model. In the first refinement,
1000 nodes were placed along each cylinder wall using the grid
characteristics explained above. A further increase to 2000 nodes
was applied in the second refinement, resulting in a 411k grid.
The cell numbers and yþ values of those grids are shown in
Table 4. No important differences were found in the main veloc-
ities and turbulence parameters. As an example, the turbulent
kinetic energy profiles obtained at the line L1 are shown in
Fig. 3(c). The volume-averaged k values in Table 4 differed by
less than 2% between the coarsest and finest grids. Thus, because
the 60.4 k grid predictions were in good agreement with those of
larger grids but required less computational time, that grid was
selected as the outline to perform the rest of the simulations. The
nodal distribution of the selected grid is shown in Fig. 4. The total
number of cells in this grid is consistent with those used in other
works [19–21].

Results and Discussion

Analysis of the Low-Reynolds-Number Turbulence Models
(Reynolds Number Effect). The relationship between DR and
the flow characteristics has been further analyzed using the most
satisfactory LRN turbulence model. The intrinsic volume-
averaged values of k and e predicted by each model are shown in
Figs. 5(a) and 5(b). Because no studies were found in which DR
was varied, the base case corresponds to the flow over a staggered
arrangement of square cylinders at /¼ 0.3 and DR¼ 1.0. The cor-
responding RVE is shown in the inset of Fig. 5(a). Here, ReD was
varied from 500 to 4� 104 to compare our results with those of
similar works.

At ReD¼ 500, the values predicted by the LRN turbulence
models were scattered. At this Reynolds number, the YS model
delivered the lowest values. For k, the AKN and LR k–x models
showed fair agreement with the results of Kundu et al. [21],
whereas the LB and STD responses were closer to the values of
Kuwahara et al. [11]. For the turbulent kinetic energy dissipation
rate, the results of the LR k–x model were in good agreement
with the data from Kundu et al., whereas the STD model response
was greatly overestimated. When ReD was increased further
(Re_D> 1000), the inertial forces were even more dominant. In
this case, the k values predicted by the LB model decreased from
the maximum value of approximately hkif =u2

D¼ 5.0 at
ReD¼ 1� 103 to hkif =u2

D¼ 2.4 at ReD¼ 4� 104. The results of
the other LRN turbulence models and the STD model were inde-
pendent of ReD, and the magnitudes were almost constant. For the
LR k–x and YS models, the dimensionless k values were poorly
predicted, whereas those of the AKN and STD models were in
good agreement with those reported in other works. The LB and
AKN models predicted constant values of the dimensionless e
independent of ReD, and the values of the YS and LR k–x models
were slightly below those reported by Kundu et al. [21] and Teruel
and Rizwan-Uddin [36]. Except for ReD¼ 1� 103, the STD
model showed good agreement with the other works. The differ-
ences between the LRN turbulence models, STD model, and LES
at ReD¼ 500 may be related to transitional flow effects, because
ReD is near the reported limit for the onset of turbulence,
ReD¼ 300 [37]. However, further studies are needed to elucidate
these differences.

Figure 6 shows the behavior of the dimensionless MPG pre-
dicted by the models as a function of ReD. The AKN, STD, and
YS values of this parameter were consistent with the linear tend-
ency reported by Kundu et al. [21] and Kuwahara et al. [11].

Table 3 Cell numbers and dimensionless volume averaged k
and e for the different grids

# Cells N hkif =u2
D heif H/u3

D

STD model 16,024 80 1.261 69.02
ReD ¼1� 105, 33,298 140 1.252 73.79
/¼ 0.27 60,442 250 1.260 78.82
DR¼ 0.8. 126,962 500 1.247 79.14

Extrapolated — 1.256 78.92
eext — 0.31 % 0.11%
GCI — 0.93 % 0.36%
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Although the LB and LR k–x models gave slightly over-and
under-estimated values, respectively, both models could also be
considered to be in fair agreement with the other works. In sum-
mary, when ReD was near the onset of turbulence, the results of
the models showed significant differences in k and e. At higher
ReD, both turbulence parameters tended to be constant, and the
AKN and STD models were in better agreement with other data

from the literature. For k in particular, the YS and k–x LRN mod-
els underestimated the values. All the assessed models showed
reasonable results for the MPG.

Volume-Averaged Values as a Function of / Predicted by
the Low-Reynolds-Number Turbulence Models. The turbu-
lence parameters and macroscopic pressure gradient as a function

Fig. 3 Comparison of profiles for grid independence analysis, and the effect of the near-wall refinement: (a) mean vorticity
magnitude at L1, (b) dimensionless e at the line L1, and (c) effect of the near-wall resolution in terms of k at the line L1

Fig. 4 Detail of the final grid used as basis to all the final simulations
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of / were evaluated. For this purpose, the dimensions of the RVE
composed of square cylinders with DR¼ 1.0 were changed according
to the relation /¼ 1� (D/H)2 to cover a porosity range of 0.3–0.8 in
intervals of 0.1. The runs were performed at ReD¼ 50� 103, repre-
senting fully turbulent flow conditions. The dimensionless k and e
results are shown in Figs. 7(a) and 7(b), respectively. For comparison,
the correlation formulas suggested by Nakayama and Kuwahara [18]
and data from other authors are also included.

As shown in Fig. 7(a), the LB model overestimated the values
of k, whereas the YS and LR k–x models underestimated them.
Both the AKN and STD models showed fair agreement with Yang
et al. [16] and Nakayama and Kuwahara [18]. The differences
between the RANS predictions of Nakayama and Kuwahara, and
those obtained by LES, are attributed to the overestimation of the
production of the k term, especially in regions where the flow is
strongly decelerated, as discussed in [11]. Although the LES
model is better able to avoid this disadvantage, as discussed
above, it also requires significant computational resources.

The turbulent dissipation rates predicted by the STD, AKN,
LB, and YS models were in good agreement with those reported
in other works, and the LR k–x model underestimated the values.
No information related to this turbulence quantity by more power-
ful approaches such as LES was found in the literature. The
dimensionless MPG as a function of / is shown in Fig. 8. For
comparison, the correlation formulas of Nakayama and Kuwahara
[18] and Kundu et al. [21] are also plotted. For this parameter, all
the assessed models showed the nonlinear tendency suggested by
Kundu et al. and were in agreement with the LES results of Kuwa-
hara et al. [11]. According to Kundu et al., this loss of linearity at
ð1� /Þ=/3 >2 is related to slower growth of the friction factor
compared to that at higher porosity, where different flow patterns
within pores also appear [21].

Overview of the Source of Differences Between the Low-
Reynolds-Number Turbulence Models. Some insights about the
source of the differences between the volume-averaged quantities

predicted by the LRN turbulence models are presented. The for-
mulation of the LR k–x model was intended to capture the main
features of a flat-plate boundary layer during a transition from
laminar to turbulent flow [14]. This goal was realized by including
a damping function in the eddy viscosity term a�, and the damping
b� term, accounted for, in its turbulent kinetic energy dissipation
rate definition (e¼ b�kx). These functions were formulated so as
to meet the following conditions: (a) The critical Reynolds num-
berl (Rexc) at which production overcomes dissipation in the k
equation matches the minimum Rexc at which
Tollmien–Schlichting waves begin to form; (b) The asymptotic
behavior of k and e as they approach a solid boundary is verified;
and (c) the closure constants preserve their original fully turbulent
values at Retx !1. According to our results, this model deliv-
ered reasonable values for k at the lowest ReD value of 500
because its formulation accounts for transitional features. How-
ever, at higher ReD, both k and e were underestimated, suggesting
that excessive damping occurs in fully turbulent flow.

The differences between the results of the LB model and the lit-
erature data can be explained by considering that the validity of
the damping functions and inner constants were verified in fully
developed pipe flows without pressure gradient effects. According
to Abe et al. [24], the LB model fails to reproduce the near-wall
limiting behavior of the Reynolds stresses. In addition, those
authors also reported differences in the friction coefficient of a
flow affected by an adverse pressure gradient.

Although the damping functions employed in the YS model
were validated using data from flat-plate boundary layers, channel

Table 4 Effect of the grid resolution in the near-wall regions at
ReD 51003103, /50.27 and DR 5 0.8

#Cells N yþ hkif =u2
D

60,442a (Base grid) 250 20.79 1.035
213,242a (Refinement 1) 1000 5.73 1.030
411,220a (Refinement 2) 2000 2.99 1.048
411220b (Refinement 2) 2000 2.97 1.031

aAKN model.
bYS model.

Fig. 5 Numerical response of the assessed LRN turbulence models as a function of ReD: (a) dimensionless turbulent kinetic
energy and (b) dimensionless turbulent kinetic energy dissipation rate

Fig. 6 Response of the macroscopic pressure gradient as a
function of ReD for the tested models
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flows, and flows under the influence of an adverse pressure gradi-
ent, the volume-averaged k values obtained here were underesti-
mated when they were evaluated as a function of ReD or /. To
better understand the source of this underestimation, the response
of the YS model was evaluated using a refined grid of 411k cells
at /¼ 0.27, DR¼ 0.8, and ReD¼ 100� 103. As shown in the last
row of Table 4, the predicted volume-averaged k values showed
better agreement with those of the AKN model, suggesting that
the YS model depends strongly on near-wall refinement. This sug-
gestion is reasonable considering that the intrinsic volume-
averaged results rely on the numerical integration of the cell
values along the entire domain. However, a comparison of the k
profiles obtained for the flat-plate and adverse pressure gradient
test cases by Yang and Shih [25] reveals that discrepancies
occurred, most of which were underestimations in the inner layer
region. In addition, in the work of Hrenya et al. [10], the YS
model underestimated the axial velocity in the logarithmic region
of a turbulent pipe flow at Re¼ 7� 103 and underestimated k at
some near-wall locations as Re was increased to Re¼ 500� 103.

In the formulation of the AKN model, the functions were
designed to deal mainly with separating and reattaching flows,
and the Kolmogorov velocity scale was used to account for near-
wall damping of the Reynolds stresses. This model predicted the
friction factor, mean velocities, separation–reattachment length,
and turbulence quantities in a backward-facing step well [24].
Because the flow features are expected to be defined by flow

separation and reattachment in simulations with different DR and
/ values, the AKN model was used in additional runs.

Description of the Volume-Averaged Flow Parameters as a
Function of ReD and Diameter Ratio. The dimensionless
volume-averaged x, k, e, and MPG plotted as a function of DR
and ReD are shown in Figs. 9(a)–9(d). In all these runs, a fixed RVE
height H was used. As shown in Fig. 9(a), the vorticity is almost con-
stant in the entire ReD range. At the lowest DR¼ 0.2 value and the
highest porosity of /¼ 0.72, the flow is less bounded, and the vortic-
ity values are the lowest. From the minimum value of x¼ 10, the
value increased in proportion to DR, reaching a maximum of
x¼ 100 at DR¼ 0.8 and /¼ 0.27. Although the DR¼ 0.8 and
DR¼ 1.0 domains had similar porosity values, the volume-averaged
vorticity in the pores at DR¼ 0.8 was almost twice that at DR¼ 1.0.

Except for the base case, the turbulent kinetic energy increased
significantly between ReD¼ 500 and ReD¼ 1� 103. For ReD

>1� 103, the turbulent kinetic energy was almost constant in all
the pore models. The values of k inside the pore domains were
similar at DR¼ 0.2 and 0.4 and increased dramatically at
DR¼ 0.8. The base case delivered more k than the DR¼ 0.8 case,
in contrast to its predictions for x.

The turbulent kinetic energy dissipation rate results are shown in
Fig. 9(c). Again, a sharp increase appeared between ReD¼ 500 and
ReD¼ 1� 103, and the values tended to be constant at higher ReD.
However, for this parameter, between DR¼ 0.2 and DR¼ 0.4, the
magnitudes increased, and the largest values, which exceeded those
of the base case, appeared for the DR¼ 0.8 model. The MPG of the
models grew linearly as a function of ReD. In addition, the DR¼ 0.8
and the base case values were very similar. No large differences
appeared between the DR¼ 0.2 and DR¼ 0.4 models, and the values
for DR¼ 0.6 were intermediate between those of these two models.

The independence of the volume-averaged values of k and e in
fully turbulent flow (i.e., at ReD> 1� 103) were reported by
[16,18,21] for regular domains composed of particles with the
same D, and it was preserved even when DR varied. As will be
explained below using maps of the interstitial velocity, vorticity,
and turbulence, the values of the volume-averaged k, e, and x in
terms of DR, are related to peculiar shear layer interactions, recir-
culation regions, and flow streams that formed between cylinders
as their wall distances changed.

Assessment of the Flow Patterns Formed at Different Diam-
eter Ratio. To investigate the local flow structures inside the
porous media, which determine the volume-averaged values, con-
tour maps of the dimensionless mean velocity and vorticity
obtained at different DR values in fully turbulent flow

Fig. 7 Turbulence parameters as a function of porosity: (a) dimensionless turbulent kinetic energy and (b) turbulent kinetic
energy dissipation rate

Fig. 8 Effect of / on the macroscopic pressure gradient over
an arrangement of square cylinders with the same diameter
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(ReD¼ 50� 103) are presented in Fig. 10. As reported in the
Description of the Volume-Averaged Flow Parameters as a Func-
tion of ReD and Diameter Ratio section, the volume-averaged

values of most of the variables were similar in the DR¼ 0.2 and
DR¼ 0.4 models. Therefore, the DR¼ 0.4 contour maps are not
included in this analysis.

Fig. 9 Dimensionless intrinsic volume averaged quantities as a function of ReD and DR: (a) vorticity magnitude, (b) turbulent
kinetic energy, (c) turbulent kinetic energy dissipation rate, and (d) macroscopic pressure gradient

Fig. 10 Contour maps of dimensionless velocity and vorticity for different DR at ReD 5 50 3 103. Axis in figures are x/H and
y/H.
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At the lowest DR value of 0.2, two well-defined high-velocity
streams with maximum velocity of u=uD¼ 2.8 appeared in the
upper and lower parts of the large square. For the domains corre-
sponding to DR¼ 0.6 and 0.8, the maximum velocity increased
by a factor of approximately two, as the flow confinement
increased. In the upper and lower vertical flow channels between

the small cylinders, and in the space between the large- and small-
centered cylinders, the flow velocities were low. Interestingly, the
velocity exhibited very different behavior in the base case com-
pared to the other arrangements, because the main flow stream
impinged directly upon the main square. This result indicates the
effect of particle sorting on the mean flow patterns.

Fig. 11 Effect of increasing the number of repetitive elements in the RVE’s: (a) periodic
domain composed of one large cylinder arrangement, simulated at ReD550 3 103, DR 5 0.6
and /50.48, (b) domain composed of four large cylinders, at ReD 5 50 3 103, DR 5 0.6, and
/50.48, (c) one large cylinder arrangement tested at ReD 5 5 3 103, /50.8 and DR 5 0.6, and
(d) RVE composed of four large cylinders at ReD55 3 103, /50.8, and DR 5 0.6

Fig. 12 Comparison of the profiles of vorticity and k extracted from the lines L2 and L3 shown in Fig. 11: (a) results for the
case corresponding to ReD 5 50 3 103, DR 5 0.6 and /50.48 and (b) results corresponding to the case ReD 5 5 3 103, / 5 0.8,
and DR 5 0.6
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Owing to interaction between the walls and the main flow
streams, distinctive vortical structures appeared. For the DR¼ 0.2
configuration, two symmetrical and well-defined shear layers of

high vorticity (xD=uD¼ 25–50) appeared behind the smaller cyl-
inders. No important high-vorticity spots were present between
the main cylinder and the two smaller centered ones. At DR¼ 0.6,

Fig. 13 Contour maps of the dimensionless turbulent kinetic energy and its dissipation rate at different DR at ReD550 3 103.
Axis in figures are x/H and y/H.

Fig. 14 Volume averaged flow parameters as a function of porosity: (a) k, (b) e, (c) MPG, and (d) friction factor for cases where
H is fixed (dashed lines are the correlation functions)
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the maximum vorticity reached 100 units, and the shear layers
that formed behind the upper and lower cylinder rows were dis-
rupted by the presence of the wall. Consequently, two rotating
flow zones of xD=uD¼ 10–40 were formed inside the vertical
gaps.

At the highest DR value of 0.8 and the lowest porosity, the vor-
ticity increased further to xD=uD¼ 200. Because the vortical
regions in the upper and lower vertical gaps were plugged by the
shear layers of the smaller cylinders, their vorticity magnitude did
not change significantly. Similar shear layers and high-velocity
streams have been observed experimentally in domains consisting
of aligned cylinders with the same diameter by Larsson et al. [38]
and numerically in the transitional regime by Agnaou et al. [39].

To verify the validity of the vortical regions trapped inside the
upper and lower gaps, an additional run using an RVE four times
larger than the original one was conducted for DR¼ 0.6 and
/¼ 0.48. As shown in Figs. 11(a) and 11(b), the results for these
two RVE sizes were nearly identical. An additional analysis was
conducted at a lower ReD of 5� 103 for the highest porosity
(/¼ 0.8) and the same DR. As shown in the contour maps of the
dimensionless k in Figs. 11(c) and 11(d), the predictions for each
RVE size were again very similar. Figure 12 compares the pre-
dicted profiles in regions where strong flow gradients are present

Table 5 Adjustment constants A, B, and C for the polynomial
approximation proposed for the different DR models

DR A B C R2

hkif =u2
D

0.2 0.065 0.269 �1:24� 10�4 0.9996
0.4 0.076 0.114 2:32� 10�3 0.9988
0.6 0.073 0.060 2:41� 10�3 0.9968
0.8 0.023 0.055 4:84� 10�3 0.9997

heif H=u3
D

0.2 1.171 �0.565 2.617 0.9998
0.4 0.863 �0.610 1.345 0.9998
0.6 0.513 �0.081 0.793 0.9998
0.8 0.546 �0.631 0.744 0.9998

� dhpif

dx

D

qu2
D

� �
0.2 0.714 �1.377 1.423 0.9998
0.4 0.357 0.536 0.721 0.9998
0.6 0.204 �0.202 0.273 0.9998
0.8 0.035 0.044 0.119 0.9998

Fig. 15 Contours of dimensionless mean velocity as a function of / and DR at ReD 5 50 3103. Axis in figure are x/H and y/H.
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(lines L2 and L3 in Fig. 11). Again, good agreement was obtained
in all the cases. In addition, a DNS of a porous medium consisting
of an array of cylinders with the same D at high porosity (/ >
0.75) showed that the turbulence structures are generally limited
by the pore size [6]. Furthermore, even when the structures are
extended and have a slight effect on nearby pores, this effect
decays with distance, and no large-scale structures are expected to
persist [5].

The local mean distributions of the dimensionless k for different
DR values are shown in Fig. 13. For DR¼ 0.2, uniform values of
approximately k=u2

D¼ 0.5–0.7 were observed between the smaller
cylinders, with barely visible regions of k=u2

D¼ 1.0 at their front
edges.

By contrast, for DR¼ 0.6, the gradients were more intense, but
k was less sparse within the domain. The highest value,
k=u2

D¼ 1.5, appeared at the corners of the front edge of the large
cylinder. In the upper vertical channels as well as the lateral side
channels between the centered cylinders, the k values were low.
The k patterns for DR¼ 0.6 and 0.8 did not differ significantly.
However, for DR¼ 0.8, the maximum value was k=u2

D¼ 5.0,
which is at least three times the values in the DR¼ 0.6 case.

The values of the turbulent dissipation rate depended strongly
on DR. For DR¼ 0.2, zones in which the turbulent dissipation

rate had a maximum value of eH=u3
D¼ 10 appeared at the front

corners of the large cylinders as well as in the upper faces of the
smaller ones. In the rear parts of the smaller cylinders, some gra-
dients of e with intermediate values were observed. As the flow
became more confined, the turbulent dissipation rate increased,
and the zones with higher gradients were relocated such that they
almost coincided with those of high k. The maximum levels of
turbulent dissipation rate appeared for DR¼ 0.8, where
eH=u3

D¼ 200, which is approximately 20 times the values for
DR¼ 0.2. Because the turbulent dissipation rate is related to the
energy loss due to viscous effects, this result suggests that the
major contributor to the flow energy losses is dissipation in the
walls by friction for DR¼ 0.6 and 0.8. For DR¼ 0.2, turbulent
dissipation rate gradients were observed in the shear layers of the
smaller cylinders. Delafosse et al. [40] have reported that the
regions of high x, k, and e are close to each other, and this obser-
vation has been explained by considering that inside the vortex
cores, the turbulent kinetic energy is maximum, and thus, the tur-
bulent dissipation rate has been linked to nearby positions. The
flow patterns of k and e in the base case were notably different
from those in the other configurations. The regions with high
gradients of the turbulent kinetic energy and its dissipation rate
coincided with the high-velocity core region, but not with the

Fig. 16 Contours of vorticity as a function of / and DR at ReD 550 3 103. Axis in figure are x/H and y/H.
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high-vorticity region, which appears near the edges of the square
cylinders.

Volume-Averaged Turbulence Parameters, Macroscopic
Pressure Gradient, and Friction Factor as a Function of
Porosity. Figures 14(a)–14(d) show the intrinsic volume-
averaged k, e, MPG, and friction factor (f) as functions of / at
ReD¼ 50� 103. The porosity / ranged from 0.27 to 0.8. This was
conveniently realized by modifying the distances H of the original
DR domains. In the entire porosity range, the k values for the base
case were largest, followed by those of the DR¼ 0.2 model. The
DR¼ 0.4 and DR¼ 0.8 models exhibited similar growth tenden-
cies, although with values lower than those of the DR¼ 0.2
model. At DR¼ 0.6 and ð1� /Þ=/2¼ 3.75–7.8, the values of k
were similar to the values at DR¼ 0.8.

At 0.3 <ð1� /Þ=/2 < 2.0, the turbulent dissipation rate in the
base case was larger than those of the other models. However,
at ð1� /Þ=/2 > 3.75, e was highest at DR¼ 0.2. Except for
the base case, moderate increases in the turbulent dissipation
rate were observed between ð1� /Þ=/2¼ 0.3 and 0.6 for the
DR models, suggesting that the flow features did not differ
significantly. All the models exhibited linear growth at
ð1� /Þ=/2¼ 0.6–7.8.

The behavior of MPG was similar to that of e. Table 5
lists adjustment constants for k, e, and MPG, which were
obtained using a parabolic function, f(x)¼AþBxþCx2, with
x ¼ ð1� /Þ=/2. Here, the maximum scatter was estimated to be
approximately 3%. This type of function was selected because the
conventional power function f(x)¼Axn did not yield well-
correlated values at lower ð1� /Þ=/2.

Fig. 17 Velocity vector plots for different domains at ReD 550 3 103. Axis are x/H and y/H.
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Figure 14(d) shows the friction factor f given by Eq. (14) as a
function of Redeq

for the domains with fixed H. In Eq. 14, deq is
estimated from Eq. (15) for square cylinders in a cross flow from
Nakayama and Sano [41] and using a corrected diameter,
dcorr¼ (Dþ d)/2. For comparison, the base case of DR¼ 1.0 and
the corresponding values from Kundu et al. [21] are also shown.
As in the results for k and e, all the DR models exhibited the same
behavior regardless of the value of Reeq. In addition, the values
for DR¼ 0.8 were larger than those of the other models. For a
fixed value of H, the highest DR domain had the lowest porosity
(/¼0.27). As the level of confinement increases, the flow streams
have higher velocities, increasing both e and the pressure losses
by friction on the walls.

f ¼ � dhpif

dx

� �
=

qf u
2
D

2deq

 !
(14)

deq ¼
ffiffiffiffiffiffiffiffi
32

120

r
/

1� /
dcorr (15)

Flow Patterns as a Function of / and Diameter Ratio. Fig-
ures 15 and 16 show dimensionless contour maps of the mean

velocity and vorticity, respectively. The columns refer to the low-
est and highest DR values tested, i.e., 0.2 and 0.8, and the rows
correspond to different porosity values.

At the highest porosity, /¼ 0.8, the flow was characterized by
two well-defined high-velocity streams extending along the upper
and lower faces of the largest cylinder. Here, the maximum veloc-
ities were u=uD¼ 2.5 and 2.0 for DR¼ 0.2 and 0.8, respectively.
In the gap between the lateral smaller cylinders and the large one,
flow gradients with intermediate magnitudes appeared, and the
velocity u=uD ranged between 0.75 and 1.0 for both DR values.

As the porosity decreased to /¼ 0.5, the maximum velocities
increased by a factor of two, reaching u=uD¼ 5.0 for DR¼ 0.2
and u=uD¼ 4.0 for DR¼ 0.8. For the lowest porosity, /¼ 0.3, the
maximum stream velocity was approximately u=uD¼ 10 for all
DR values. For DR¼ 0.2 and /¼ 0.5 and 0.3, the region of maxi-
mum velocity coincided with the gap between central small cylin-
ders and the lower and upper face of the large one. For DR¼ 0.8,
the high-velocity regions covered a larger area along the upper
and lower faces of the large cylinder.

In all cases, the vorticity was highly concentrated near the cor-
ners of all the cylinders. In addition, all the shear layers were elon-
gated in the flow direction and bounded the two main flow
streams discussed above. At /¼ 0.8, rotational regions appeared

Fig. 18 Contours of dimensionless turbulent kinetic energy dissipation rate at different / and DR obtained at ReD 550 3 103.
Axis in figure are x/H and y/H.
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in the spaces in the middle row of cylinders owing to the shear
layer and separation of the large cylinder. The vorticity in these
regions ranged from xD=uD¼ 10–15 at DR¼ 0.2 to
xD=uD¼ 8.0–12 at DR¼ 0.8. At the lowest DR, the smaller front-
and rear-centered cylinders were fully immersed in the wake of
the large cylinder. At DR¼ 0.8, the wake of the small central cyl-
inder impinged upon the large cylinder, and the rear small cylin-
der disrupted the wake of the large cylinder, forming another
recirculation region. These shear layers are similar to the shielding
regime in free flow over four cylinders in an in-line formation
[42]. In the gaps between the upper and lower small cylinders at
DR¼ 0.2, the shear layers were extended, forming well-defined
lobules, whereas at DR¼ 0.8, they were disrupted by proximity to
the wall. As the porosity decreased further, the proximity to the
wall increased, and the shear layers and regions of highest vortic-
ity were closer to each other. For /¼ 0.3 and 0.5 and both DR
values, the shear layers from the upper and lower small cylinders
in front interacted with those of the large cylinder, enhancing the
vorticity production. At DR¼ 0.2 and /¼ 0.3, the maximum vor-
ticity was xD=uD¼ 500, which is approximately 20 times that at
/¼ 0.8. For DR¼ 0.8, the maximum vorticity increased from 20
at /¼ 0.8 to 200 at /¼ 0.3. Thus, at the same porosity, the recir-
culating patterns and their intensities depended on the DR. For the
same domains, the corresponding velocity vectors (Fig. 17) show
the shapes of the confined vortices. Here, the effective flow areas
of the main currents are narrower at lower / because of the pres-
ence of the low-velocity recirculation regions. This type of nar-
rowing of the flow channels by eddy formation has also been
reported by Chaudhary et al. [43].

Maps of the turbulent dissipation rate are shown in Fig. 18.
Like the vorticity, e was concentrated near the cylinder corners,
and it increased even more sharply as the porosity decreased, dif-
fering by a factor of more than 100 between the models with the
lowest and highest porosities. However, in contrast to the vortic-
ity, the turbulent dissipation rate was low in the spaces between
the central cylinder rows (at y¼ 0).

In summary, for all the tested DR values, at higher porosity, the
velocity, vorticity, and the turbulent dissipation rate were low,
and the shear layers were extended. As the porosity gradually
decreased, the velocity of the gap flows increased, the shear layers
were disrupted, and vortices were trapped in the low-velocity
gaps. The effective flow area was reduced by vortex narrowing.
As a consequence of direct interactions between shear layers, the
vorticity and the turbulent dissipation rate increased sharply in
magnitude, and strong frictional forces were present, as indicated
by the high MPG values. On the basis of the volume-averaged
profiles in Figs. 14(a)–14(d), the critical value of / at which the
flow parameters increase greatly in magnitude is estimated to be
/ � 0.6; the largest energetic losses generally appear at DR¼ 0.2
and the lowest porosity.

Conclusions

The ability of the AKN, LB, YS, STD k–e, and k–x LRN turbu-
lence models to predict the volume-averaged quantities was tested
using a periodic array of square cylinders. Additionally, the flow
patterns inside pores in arrays of square cylinders with different
diameter ratios were assessed. The flow was turbulent and covered
the Reynolds number range of ReD¼ 500� 500� 103; the poros-
ity / was varied from 0.27 to 0.8, and the DR was varied from 0.2
to 0.8. Overall, all of the LRN turbulence models were able to pre-
dict the MPG for all ReD. However, the values predicted by the
YS, LB, and LR k–x models exhibited discrepancies, especially
those of the turbulent kinetic energy, as a function of both / and
ReD. Overall, the AKN model exhibited better agreement.

A diameter ratio analysis yielded the following findings. In all
of the scenarios, two main currents transported all of the flow
along the domain. At higher porosity (/ > 0.6), the velocities
were low, and the streams were wide. Wakes were formed, and
the turbulent kinetic energy production, its turbulent dissipation

rate, and MPG were typically low. The flow features of the DR
models were different from those of an infinite staggered arrange-
ment of square cylinders of the same diameter. Depending on DR,
as the porosity decreased, the gap velocities increased, and the
shear layers were suppressed by proximity to the wall, forming
recirculation zones within the gaps. Consequently, the frictional
forces were enhanced, and the turbulence parameters increased
greatly. The highest values of the turbulent kinetic energy produc-
tion and its dissipation rate, as well as the MPG, were observed
when the flow confinement was such that the shear layers inter-
acted directly. The highest values were observed for DR¼ 0.2.
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Nomenclature

Cl; C1e; C2e, rk, re ¼ constants of the turbulence closure
equations

d ¼ small particle diameter (m)
D ¼ large particle diameter (m)

deq ¼ equivalent diameter (m)
dcorr ¼ corrected diameter (m)

f ¼ friction factor
f1, f2, fl ¼ damping functions of the LRN turbulence

models
H ¼ representative volume element height/

lenght (m)
k ¼ turbulent kinetic energy (m2/s2)

hkif ¼ intrinsic volume average turbulent kinetic
energy (m2/s2)

P ¼ pressure (N/m2)
hPif ¼ fluid volume average pressure (N/m2)
ReD ¼ Reynolds number based on largest particle

diameter and Darcy velocity (uDD/�)
Reeq ¼ equivalent Reynolds number
Rep ¼ pore Reynolds number (huif D/�)

Rt ¼ turbulence Reynolds number for damping
function (k2=�e)

Rtx ¼ turbulence Reynolds number for damping
function (k=�x)

Ry ¼ turbulence Reynolds number for damping
function (y

ffiffiffi
k
p

=�)
uD ¼ Darcian velocity (m/s)
uK ¼ Kolmogorov velocity scale (m/s)
us ¼ friction velocity (

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
) (m/s)

ui ¼ time-averaged velocity vector (m/s)

huif ¼ intrinsic volume average velocity (m/s)
V ¼ total volume (m3)
Vf ¼ fluid volume (m3)
xi ¼ Cartesian coordinates (m)

yþ ¼ dimensionless wall distance (usy=�)
y� ¼ dimensionless wall distance (y� ¼ uKy=�)

a�1; a�0, ¼ k � x model constants
e ¼ turbulent kinetic energy dissipation rate

(m2/s3)
heif ¼ intrinsic volume average turbulent kinetic

energy dissipation rate (m2/s3)
l ¼ molecular viscosity (Pa�s)
lt ¼ turbulent viscosity (Pa�s)
/ ¼ porosity
x ¼ dissipation per unit turbulent kinetic energy

(qk=lt), vorticity magnitude (1/s)
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hxif ¼ intrinsic volume average vorticity
magnitude (1/s)

qf ¼ fluid density (kg/m3)

qu0iu
0
j ¼ Reynolds stresses (Pa)

sw ¼ wall shear stress (N/m2)
� ¼ kinematic viscosity (m2/s)
�t ¼ kinematic turbulent viscosity (m2/s)
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